A SAS macro for parametric and semiparametric mixture cure models
نویسندگان
چکیده
Cure models have been developed to analyze failure time data with a cured fraction. For such data, standard survival models are usually not appropriate because they do not account for the possibility of cure. Mixture cure models assume that the studied population is a mixture of susceptible individuals, who may experience the event of interest, and non-susceptible individuals that will never experience it. The aim of this paper is to propose a SAS macro to estimate parametric and semiparametric mixture cure models with covariates. The cure fraction can be modelled by various binary regression models. Parametric and semiparametric models can be used to model the survival of uncured individuals. The maximization of the likelihood function is performed using SAS PROC NLMIXED for parametric models and through an EM algorithm for the Cox's proportional hazards mixture cure model. Indications and limitations of the proposed macro are discussed and an example in the field of cancer clinical trials is shown.
منابع مشابه
A Class of Semiparametric Mixture Cure Survival Models with Dependent Censoring.
Modern cancer treatments have substantially improved cure rates and have generated a great interest in and need for proper statistical tools to analyze survival data with non-negligible cure fractions. Data with cure fractions are often complicated by dependent censoring, and the analysis of this type of data typically involves untestable parametric assumptions on the dependence of the censorin...
متن کاملEvaluation of Factors Related to Short-Term and Long-Term Survival of Breast Cancer Patients by Mixture Cure Model
Introduction: Breast cancer is the most common cancer among women. Today, with advancements in medical sciences, increasing the cure probability of patients as well as increasing survival time is an important goal of cancer treatment. Therefore, in this study, in addition to examining patients’ survival, we investigated the cure probability of breast cancer patients and its prognostic factors u...
متن کاملSUGI 28: Smoothing with SAS(r) PROC MIXED
Mixed models are an extension of regression models that allows for incorporation of random effects. The application of mixed-effects models to practical data analysis has greatly expanded with consequent development of theory and computer software. It also turns out that mixed models are closely related to smoothing. Nonparametric regression models, especially the general smoothing spline model...
متن کاملMixtures of varying coefficient models for longitudinal data with discrete or continuous nonignorable dropout.
The analysis of longitudinal repeated measures data is frequently complicated by missing data due to informative dropout. We describe a mixture model for joint distribution for longitudinal repeated measures, where the dropout distribution may be continuous and the dependence between response and dropout is semiparametric. Specifically, we assume that responses follow a varying coefficient rand...
متن کاملA SAS Procedure Based on Mixture Models for Estimating Developmental Trajectories
This article introduces a new SAS procedure written by the authors that analyzes longitudinal data (developmental trajectories) by fitting a mixture model. The TRAJ procedure fits semiparametric (discrete) mixtures of censored normal, Poisson, zero-inflated Poisson, and Bernoulli distributions to longitudinal data. Applications to psychometric scale data, offense counts, and a dichotomous preva...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer methods and programs in biomedicine
دوره 85 2 شماره
صفحات -
تاریخ انتشار 2007